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Abstract

This paper identifies important classes of program control flows in applications targeted to

commodity commercially available graphics processing units (GPUs) and characterizes their

presence in real workloads such as those that occur in CUDA and OpenCL. Broadly, control

flow can be characterized as structured or unstructured. It is shown that most existing techniques

for handling divergent control in bulk synchronous GPU applications handle structured control

flow efficiently, some are incapable of executing unstructured control flow directly, and none han-

dles unstructured control flow efficiently. An approach to reduce the impact of this problem is

provided.

An unstructured-to-structured control flow transformation for CUDA kernels is implemented

and its performance impact on a large class of GPU applications is assessed. The results quan-

tify the importance of improving support for programs with unstructured control flow on GPUs.

The transformation can also be used in a JIT compiler pass to execute programs with unstruc-

tured control flow on the GPU devices that do not support unstructured control flow. This is an

important capability for execution portability of applications using GPU accelerators.

Keywords: GPU, Unstructured Control Flow, Branch Divergence
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1 Introduction

The transition to many-core computing has been accompanied by the emergence of heterogeneous

architectures driven in large part by the major improvements in jJoules/operation and further influ-

enced by the evolution to throughput-oriented computing. This has coincided with the growth of

data parallel computation that has become a pervasive and powerful model of computation. whose

Its importance has been amplified by the rate at which raw data is being generated today in all

sectors of the economy and rapidly growing in the foreseeable future. The emergence of low-cost

programmable GPU computing substrates from NVIDIA, Intel, and AMD have made data parallel

architectures commoditycommercially available from embedded systems through large scale clusters

such as the Tsubame (Matsuoka 2008) and Keeneland systems (NICS 2010), hosting thousands of

NVIDIA Fermi chips. Major research foci now include the development of programming models,

algorithms, applications, performance analysis tools, productivity tools, and system software stacks.

Emerging data-parallel languages that implement single instruction stream multiple thread (SIMT)

models (Rixner et al. 1998) such as CUDA and OpenCL retain many of the control flow abstractions

found in modern high level languages and simplify the task of programming these architectures. How-

ever, when the SIMT threads do not follow the same control path, performance suffers through poor

hardware utilization and dynamic code expansion. This problem of branch divergence is critical to

high performance and has attracted hardware and software support. The impact of branch divergence

can be quite different depending upon whether the program’s control flow is structured (control blocks

have single entry and single exit such as if-then-else) or unstructured (control blocks have multiple

entries or exits such as those using goto statements). In fact, some GPUs will only support (and

hence their compilers will only generate) structured control flow. Therefore it becomes important to

understand the impact of unstructured control flow in GPU applications and performance effects of

techniques developed to deal with it. This understanding is critical to the development of new tech-

niques to improve the efficiency of support for unstructured control flow. This in turn can lead to the

support of advanced features in GPGPU programming such as try/catch that produces unstructured

control flow and are currently not supported in GPU architectures , such as try/catch.
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A second reason for understanding the impact of unstructured control flow and the development

of supporting compiler technology is the emerging importance of portability in future heterogeneous

many core architectures. Chips that support multiple instructions on a die, such as Intel’s Sandybridge

(AVX, x86, GEN), will be common. Execution portability can be achieved via dynamic translation

to support multiple GPU back-ends (Diamos et al. 2010). The ability to execute a GPU kernel on

multiple targets enhances portability and protects software investments. For example, transforma-

tions between unstructured and structured control flow implementations are necessary when one of

the GPUs does not natively support unstructured control flow, e.g., AMD Radeon (Dominguez et al.

2011). In reality, there already exists programs such as Optix (Parker et al. 2010) that have com-

plex unstructured control flow and need to be accelerated by GPUs. The current limited bandwidth

between GPUs and CPUs forbids lots of data movement between them when running these programs

in a high throughput system and makes the support of unstructured control flow on GPUs a desirable

solution in these cases. The future change of the balance between the bandwidth and the accelerator

complexity may alter the design decision, but it remains to see.

In this paper we seek to analyze the occurrence and impact of unstructured control flow in GPU

kernels. This paper makes the following contributions:

• Assesses the occurrence of unstructured control flow in several GPU benchmark suites.

• Establishes that unstructured control flow necessarily causes dynamic and static code expansion

for state of the art hardware and compiler schemes. It shows that this code expansion can

degrade performance in cases that do occur in real applications.

• Implements a compiler intermediate representation (IR) level transformation which that can

transform turn unstructured control flow to a structured control flow implementation. This

transformation is useful for researching the performance of arbitrary control flows on GPUs,

and is also important for execution portability via dynamic translation.

The rest of the paper is organized as follows: Section 2 introduces unstructured control flow

and its specific manifestations in GPU codes. Section 3 describes transformations for converting
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unstructured control flow to structured control flow. The experimental evaluation section, Section 4,

assesses the impact of the transformations on several benchmark suites. Section 5 introduces the

related work of this paper. The paper concludes with some general observations and directions for

future work.

2 GPU Control Flow Support

Compilers can translate high level imperative languages such as C/C++ or Java into an intermediate

representation (IR) that resembles a low level instruction set. Typical examples of IR are LLVM (Lat-

tner and Adve 2004) , PTX for CUDA GPU (NVIDIA 2009), or AMD IL for AMD GPU (AMD

2009). In the IR level, the Control Flow Graph (CFG) represents the execution path of the program.

Every node of the graph is a group of sequentially executed instructions, and the edges are the jumps

which are usually caused by conditional/unconditional branches.

Previous work (Zhang and H. D’Hollander 2004) classifies control flow patterns into two cate-

gories, structured and unstructured. In general, commonly used control flow patterns, such as those

shown in Figure 1, are structured. These patterns correspond to hammock graphs in the CFG which

are defined as subgraphs having a single entry node and a single exit node (Ferrante et al. 1987). On

the contrary, unstructured control flow may have multiple entries or exits. Figure 2 adds some extra

edges (dot line), which may be caused by goto statements, to the structured control flow in Figure 1

and turns them into unstructured control flow. Based on the classification, Zhang et al. introduced

a generic approach to transform graphs with unstructured control flow to graphs possessing struc-

tured control flow. This transformation will be explained in section 3. The remainder of this section

introduces the common sources of unstructured control flows and how they are supported in SIMT

architectures.

2.1 Sources of Unstructured Control Flow

One of the most common sources is the goto statement used in C/C++ which allows control flow to

jump to arbitrary nodes in the CFG. Similarly, longjumps and exceptions are two other sources of
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unstructured control flow.

However, even if the programming language forbids the use of goto statements (such as OpenCL),

the compiler may also produce unstructured control flow in the IR level due to unintended side-effects

of the language semantics. For example, in the code segment of Figure 3(a), the compiler does not

need to evaluate all four conditions (which is known as a short-circuit optimization) and the CFG of

the generated IR looks like Figure 3(b). This CFG has unstructured control flow because subgraph

{B1, B2} and {B3, B4} both have two exits.

Moreover, CFG optimizations performed by compilers would can also cause unstructured con-

trol flow (Cooper et al. 2001). Considering Figure 4(a), if function foo() is inlined into the main()

function, the early return statement in loop2 would will create the second exit from the loop, which

is shown in Figure 4(b).

The first example highlights the difficulty in designing language semantics that do not require

require non-existence of unstructured control flow, while the second example shows demonstrates

that only a subset of existing compiler optimizations preserve the structured property of CFGs. As a

result, designers of compilers for SIMD processors without hardware support for unstructured con-

trol flow must decide between performing existing optimization passes and then restructuring the

program or avoiding certain optimizations altogether. This greatly increases the complexity of these

compilers and potentially eliminates opportunities for optimization. Since the above examples are

very common in modern programming languages, normal programs usually have both the structured

and unstructured control flows. If the system cannot execute unstructured parts efficiently, it would

hurt the overall performance. Also ideally, it would be desirable to not place restrictions on language

semantics and retain the ability to perform arbitrary transformations on CFGs. These requirements

create a clear advantage to supporting unstructured control flow on general purpose SIMD processors.

The desires that unstructured parts should be executed efficiently to avoid hurting overall performance

while not placing restrictions on language semantics and retaining the ability to perform arbitrary

transformations on CFGs creates a clear advantage to support unstructured control flow on general

purpose SIMD processors.
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The above examples also show that, essentially, it is the interacting edge that causes the unstructured

control flows. These interacting edges occur in two mutually exclusive cases:

In the above examples, if some edges are deleted, the control flow will become structured. These

edges are called interacting edges (Zhang and H. D’Hollander 2004), since they interact with two

structured control flowhammock graphs. There are two types of such edges:

• an interacting out-edge leaves a hammock graph from a point other than the exit block, such

as edge E1 and E2 in Figure 3(b). Edge E1 in Figure 4 is also an interacting out-edge.

• an interacting in-edge enters a hammock graph from a point other than the entry block. Edge

E1 in Figure 9(a) is an exampleThe dotted line in Figure 2(b) and Figure 2(d) are two examples.

2.2 Impact of Branch Divergence in Modern GPUs

Modern programmable GPUs implement massively data parallel execution models. In this paper

we analyze GPU kernels from CUDA applications compiled to NVIDIA’s parallel thread execution

(PTX) virtual instruction set architecture. PTX defines an execution model (see Figure 5) where an

entire application is composed of a series of multi-threaded kernels. Kernels are composed of parallel

work-units called Cooperative Thread Arrays (CTAs), each of which can be executed in any order

subject to an implicit barrier between kernel launches. Threads within a CTA are grouped together

into logical units known as warps that are mapped to single instruction stream multiple data (SIMD)

units using a combination of hardware support for predication, a thread context stack, and compiler

support for identifying re-converge points at control-independent code.

Since threads within the same warp have to execute the same instructions, branch control flow can

potentially cause inefficiencies if the branch condition is not evaluated identically across all threads

in a warp. In this case, some threads may take a fall-through edge and the others may jump to the

branch target, which is referred to as branch divergence. This can be handled by a process of serially

enabling/disabling threads corresponding to the then/else branch. This effectively splits the warp into

smaller subsets of threads which may then re-converge later in the execution. The execution model

of other GPUs are similar, though they use different terminology.
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The implementation details of re-convergence differ among GPUs. In AMD GPUs illustrated

in Figure 6, its IR language (AMD IL) uses explicit instructions such as IF, ELSE, ENDIF, LOOP,

ENDLOOP, etc., which means it only supports limited structured control flows (AMD 2010). The

mapping of these control flows to the hardware is simple and fixed. It executes all the possible paths

of the program (e.g., then part and else part for IF instructions) in a lock-step manner, and threads

re-converge at the END instructions such as ENDIF or ENDLOOP. If the compound condition code

in Figure 3(a) is compiled for AMD GPUs, it has to generate CFG like Figure 10(c)Figure 3(c) which

uses nested if-then-else to form a structured control flow implementation. The Intel GEN5 graphics

processors work in a similar manner (Intel 2009).

However, mapping parallel programs with arbitrary control flows onto SIMD units is a difficult

problem because there is generally no guarantee that different parallel threads will ever be executing

the same instructions. Thus, the re-convergence point may impact the overall performance. This will

be discussed in the following subsection.

2.3 Unstructured Control Flow on GPUs

Although supporting structured control flow is sufficient for many graphics shading languages such as

Microsoft DirectX and Khronos OpenGL, the migration to general purpose models such as OpenCL

and CUDA that derive from C makes it advantageous to support unstructured control flow. Specifi-

cally, CUDA supports goto statements in the high level language. In addition, its IR language, PTX,

has many features in common with RISC ISAs, which includes arbitrary branch instructions rather

than explicit IF and LOOP instructions. Consequently, as discussed in Section 2.1, compilation

of CUDA programs can employ common CFG optimizations that are already widely used in other

C/C++ program compilation frameworks, and programmers do not need to worry about introducing

unstructured control flow into programs that are not allowed on some GPU platforms.

The current state of the practice in determining re-convergence points for divergent SIMD threads

is referred to as immediate post-dominator1 re-convergence (Fung et al. 2007) (the immediate post-dominator
1The immediate post-dominator of a branch in a CFG, informally, is the node through which all paths from the branch

pass and which does not post-dominate any other post dominator.
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of a branch in a CFG, informally, is the node through which all paths from the branch pass through

and which does not post-dominate any other post dominator). By using this method, the re-converge

point is fixed for every divergent branch and can be calculated statically during compilation. For

structured control flow, this method would re-converge at the end of loops or if-else-endif control

blocks, which are as efficient as AMD GPUs. However, it may execute inefficiently for unstructured

control flow. For example, in Figure 7, assume the warp size is 7 and these 7 threads take 7 different

paths as shown in Figure 7(b), which is the worst case for this CFG. The immediate post-dominator

of all branches is the exit node (see Figure 7(a)). Figure 7(c) shows how the SIMD unit executes these

seven threads for re-converging at the immediate post-dominator. There are many empty slots in this

figure and on average only 3.25 threads are enabled. It is also interesting to notice that the execution

of the CFG of Figure 10(c)Figure 3(c) is the same as Figure 7(c), which means AMD GPUs are also

inefficient for this example.

Dynamic code expansionDynamic code expansion occurs when different paths originating from

a divergent branch pass through common basic blocks before the re-convergence point. For example,

in Figure 7(c), time slots 7 to 11 are running dynamically expanded code because B3, B4 and B5 have

been already executed in time slots 4, 5 and 6. This concept is defined against static code expansion,

which inserts new instructions and increases the static binary size. During execution, dynamically

expanded instructions will use the same PC values while statically expanded instructions will use

different PC values.

The solution that reduces dynamic code expansion is to re-converge as early as possible. Fig-

ure 7(d) is an example where re-convergence happens much earlier than the immediate post-dominator.

It saves execution time and has much better hardware resource occupancy. To achieve performance

improvements as shown in Figure 7(d), the compiler should be capable of identifying the potential

early re-converge points and inserting necessary check instructions. It also needs the support from

hardware to efficiently compare the program counter (PC) of each thread to check for re-convergence.

There is no commercial technology that can achieve the efficiency shown in this example and thus

there is still a great deal of room for improvement in executing unstructured control flow in SIMD
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processors.

The inefficiency of re-convergence at immediate post-dominators exacerbates the problem of

branch divergence. If unstructured control flow can be handled more efficiently, some new language

semantics, such as C++ try/catch style exceptions, can be added to the current programming model.

Furthermore, compilers do not have to generate structured control flow as in Figure 10(c), if hardware

more efficiently supports unstructured control flow.

2.4 Executing Arbitrary Control Flow on GPUs

Consequently, there are three ways to run programs with arbitrary control flows on different GPU

platforms in an efficient (and hence portable) manner:

• The simplest method is to let compilers have the option to produce IR code only containing

structured control flows. This IR code then can be compiled into different back-ends. This

method may miss some optimization opportunities, but it is simplest to implement.

• Use a JIT compiler to dynamically transform the unstructured control flow to structured control

flow online when necessary, i.e., the target GPU does not support unstructured control flow. The

dynamic compilation may introduce some inevitable overhead.

• The most promising method is to develop a new technology (with support from both compiler

and hardware) to replace current approaches to fully utilize the early re-convergence opportu-

nity that is illustrated in Figure 7(d).

This paper presents an approach to the second option above - transformation of the unstructured

control flow to structured control flow in Section 3. The third option is remained as the future work.

3 Control Flow Transformations

The principal result of Zhang’s (2004) work is that the repeated application of three primary transfor-

mations can provably convert all possible unstructured programs into a structured format. However,

11



their technique only applies to the programming language level instead of the IR level. To perform

similar transformations at the PTX IR level some extra work is needed and the three original trans-

formations have to be adapted because there is no simple one-to-one mapping between CFG and

syntactic constructs. For example, syntactic constructs are flat but CFG is a two dimensional struc-

ture. The adapted transformations are conceptually and functionally equivalent to the ones used in

Zhang’s work (the detailed algorithm and correctness proof can be found in their original work) and

can be explained through the application of three primitive transformations.

• Cut: The Cut transformation moves the outgoing edge of a loop to the outside of the loop. For

example, the loop in Figure 8(a) has two unstructured outgoing edges, E1 and E2. What cut

transformations do is i) using three flags to label the location of the loop exits (flag1, flag2,

and exit in Figure 8(b)); ii) combining all exit edges to a single exit node (Figure 8(c)); iii)

using three conditional checks to find the correct code to execute after the loop(Figure 8(d)). It

should be noted that after the transformation the CFG in this example is still unstructured and

needs other transformations to make it structured.

• Backward Copy: Backward Copy moves the incoming edges of a loop to the outside of the

loop. For instance, Figure 9(a) has an unstructured incoming edge E1 into the loop. To trans-

form it, the backward copy uses the loop peeling technique to unravel the first iteration of

the loop (Figure 9(b)) and points all incoming edges to the peeled part (Figure 9(c)). In this

example, the CFG after the transformation is also unstructured. This transformation is rarely

needed (see the experiment part in Section 4) because usually neither programmers nor com-

pilers would create loops with multiple entries.

• Forward Copy: Forward Copy handles the unstructured control flow in the acyclic CFG. After

Cut and Backward Copy transformations, there are no unstructured edges coming into or going

out of loops. As a consequence, CFGs inside every loop can be handled individually and all

structured loops can be collapsed into abstract single CFG nodes. Forward Copy eliminates

all remaining unstructured branches by duplicating their target CFG nodes when traversing the

CFG in the depth-first order. For example, in Figure 10(a), B5 needs to be duplicated because
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edge E2: B4→B5 is unstructured (Figure 10(b)). Similarly, in Figure 10(b), subgraph {B3,

B4, B5 and B5’} also has to be duplicated because edge E1: B2→B3 is unstructured (Fig-

ure 10(c)). If Forward Copy is performed multiple times, some subgraphs may be duplicated

more than once and it may eventually lead to exponential code expansion. The final result

shown in Figure 10(c) duplicates B5 three times and duplicates B4 and B3 once respectively.

Actually, Figure 10(c) spans all possible paths between the entry node and the exit node every

paths between the entry node and the exit node of Figure 10(c) is a possible execution path of

Figure 10(a) .

Figure 11 compares the code duplicated by Forward Copy and the dynamically expanded code

caused by re-convergence at the immediate post-dominator (Figure 11(b) and Figure 11(c) use

the same color to represent the same basic block), it is interesting to see that they are exactly

the same. Moreover, the execution of the re-convergence at the immediate post-dominator can

be drawn as a tree (the red tree in Figure 11(c)), where each path of the tree stands for an

execution path of the program. This red tree is also the same as the CFG of Figure 11(b). In

fact these two trees both traverse the original CFG in a depth first order and they are both the

depth first spanning trees of the original CFG. This is not a coincidence and can be generalized

because they are both the depth first spanning trees of the original CFG. A simple proof is like

this: if all threads in a warp follow different paths, which is the worst case of the execution, the

warp would diverge in every CFG node which is the same as traversing the CFG in the depth-

first order. Meanwhile, Forward Copy duplicates all target node of the unstructured edges in

the depth-first order and finally no node (except the exit node) has two or more parent nodes

(otherwise, it is still unstructured) and the transformed CFG becomes a binary tree. Hence,

Forward Copy, in general, can be used to measure the worst case of dynamic code expansion

of immediate post-dominator re-convergence without running the program.

All the above three transformations will cause static code expansion since they insert new in-

structions into the original program. In SISD processors, static code expansion has disadvantages of

increased binary size and instruction cache footprint. This code expansions is even more problematic
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for SIMD architectures because paths through duplicated blocks cannot be executed in lock-step by

threads in a warp since these blocks use different PC values. Moreover, theThe cut transformation ,

especially, has to use several new variables to store flag values, which introduces new register pres-

sure. It needs to use more conditional branches as well when exiting the loop, which may cause more

divergence in the GPU architecture (see Section 2.2).

Only using the above three transformations is not sufficient since program structure must also

be maintained - such as which basic blocks form a loop or the nesting level of a control block. A

data structure called a control tree (Muchnick 1997) can provide this information, which basically

describes the components of all control flow patterns and their nested structures. Figure 12(b) shows

a CFG and its corresponding control tree. It should be noticednoted that all unstructured control

flows, such as subgraph {B1, B2, B3} in Figure 12(b), are also included in the tree.

Including the control tree construction and the three primitive transformations, the process of

transforming an unstructured CFG to a structured CFG has four steps:

1. Build a control tree and identify unstructured branches and some basic structured control flow

patterns in the CFG including if-then, if-then-else, self-loop, for-loop, and do-while loop,

2. Collapse the detected structured control flow pattern into a single abstract node and update

the control tree. The aim of this step is to simplify the search space of the following pattern

matching steps.

3. If all the children nodes of an unstructured node are all structured, use the three primitive

transformations to transform it into structured control flow. If the children nodes still contain

unstructured control flow, wait until all children become structured. Otherwise, itthe transfor-

mation would introduce more unstructured parts into the CFG. For example, in Figure 10, edge

E2 must be transformed before edge E1.

4. Update the control tree to reflect the transformation. If there is no unstructured part remaining,

the process finishes. Otherwise, go back to the second step to transform the restremaining

unstructured parts.
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Figure 12 shows all steps of transforming an unstructured CFG into a structured CFG. It first

builds a control tree and finds that subgraph B1, B2, B3 is unstructured (Figure 12(b)). Second, it

collapses the self loop into a single node and updates the control tree (Figure 12(c)). Third, it uses

Forward Copy to duplicate B3 (Figure 12(d)). Finally, it updates the control tree and determines that

there are no more unstructured parts and the whole process is completed (Figure 12(e)). Figure 12(f)

is the final result.

This transformation is not only useful in characterizing unstructured control flows as discussed

above. It can also be used in dynamic compilers which are used in heterogeneous systems. Since the

support for unstructured control flows in different GPU devices is different, this kind of transforma-

tion allows the program to run on several different back-ends which is very useful for large clusters

comprised of different GPU backends.

4 Experimental Evaluation

This section evaluates how often unstructured control flows occurs in real GPU programs and how

they may impact the performance over a large collection of CUDA benchmarks from the CUDA SDK

3.2 (NVIDIA 2010), Parboil 2.0 (Impact Research Group 2009), Rodinia 1.0 (Che et al. 2009), Optix

SDK 2.1 (Parker et al. 2010) and some third party applications. The CUDA SDK contains a large

collection of simple GPU programs. Parboil benchmarks are compute intensive. Rodinia’s collection

is chosen to represent different types of GPU parallel programs which are more complex than those

in the CUDA SDK. Optix SDK includes several ray tracing applications. The third party GPU appli-

cations used include a 3D renderer called Renderer (Tsiodras ), a radiative transport equation solver

called mcrad (Fernando 2004) , and a monte carlo simulator called mcx (Fang and Boas 2009).

As for the compilation tools, NVCC 3.2 is used to compile CUDA programs to PTX code. Op-

tix SDK benchmarks are running under Optix’s own execution engine. A GPU compilation infras-

tructure, Ocelot 1.2.807 (Diamos et al. 2010), is used for several other purposes: back-end code

generation, PTX transformation, functional emulation, trace generation and performance analysis.
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4.1 Static Characterization

The first set of experiments attempts to characterize the existence of certain types of control flow

in existing CUDA workloads by using the unstructured to structured transformations introduced in

Section 3. The transformation is implemented as a static optimization pass in Ocelot, and it is applied

to the PTX code of all benchmarks. The optimization can detect unstructured control flow and classify

themit by the type of transformations used (Cut, Backward Copy, or Forward Copy). The correctness

of the transformation is verified by comparing the output results of the original program and the

transformed program. Table 1 shows the number of applications having unstructured control flow in

four examined GPU benchmark suites. Out of the 113 applications examined, 27 contain unstructured

control flow, indicating that, at the very least an unstructured to structured compiler transformation is

required to support general CUDA applications on all GPUs. It is also the case that more complex

applications are more likely to include unstructured control flow. Almost half of the applications in

the Rodinia and Optix benchmark suites include unstructured control flow.

Table 2 shows the usage of different transformations. The second column is the number of branch

instructions in each benchmark. The third to the fifth columns show the number of times each trans-

formation is used for every benchmark. The statistics show that Backward Copy appears to be nonex-

istent in current workloads which follows the common practice that programmers rarely write a loop

with multiple entries. Cut transformations are necessary in programs that involve loops, but the shal-

low levels of nesting of GPU programs, especially those simple programs, makes this operation less

common. Forward transformations are used most often. Further researchanalysis shows that short-

circuiting is the main trigger of these transformations. As explained in Section 2.2, short-circuiting

does not run efficiently on the GPU platform.

The sixth and seventh column of Table 2 is the static code size of the benchmarks before and after

the transformation. Static Code size is calculated by counting the PTX instructions of the benchmark.

Usually the larger its code size is, the more complex control flow the program may have and the more

transformations it needs. Benchmarks that have one Cut and zero Forward Copy, such as path trace

and heightfield, show that the number of instructions inserted by Cut is small. However, this is not
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the case for the Forward Copy. In the benchmark mummergpu, its code size is almost doubled by

26 Forward Copy transformations. The code size increment caused by Forward Copy depends on

the size of the shared CFG nodes that need to be duplicated. Column eight is the relative static code

expansion. Figure 13 shows the code expansion of those benchmarks using at least one Forward Copy

with an average of 18.68%. For those benchmarks having a large number of transformations, such as

mummergpu, mcx, and Renderer, the static code expansion is significant.

Among all the benchmarks, Renderer has far more transformations than the rest. Other graphics

benchmarks (particles, Mandlebrot, Optix SDK suite) also have more unstructured control flow on

average. It is fair to say that graphics applications have great potential to improve performance if

unstructured control flow could be handled more efficiently.

The ninth column lists the transformation time of each benchmark. The overhead is basically

proportional to the number of taken transformations. Most of the benchmarks uses less than 1 mil-

lisecond to finish the transformation. Only Renderer takes more than 0.1 second because it has more

than 8,000 unstructured branches. Considering the fact that the transformation is a one time invest-

ment and complex programs usually run for a long time (e.g. tested ray tracing programs can run

forever), this overhead is affordable even if applied in runtime.

4.2 Dynamic Characterization

4.2.1 Impact of IPDOM

In the absence of support for re-convergence for unstructured control flow vs. immediate post-

dominator, we use the functional emulator provided by Ocelot to count the number of instructions

executed due to the lack of earlier re-convergence. For example, the instructions executed in the red

circle of Figure 14. We perform measurements over code segments that meet three requirements:

i) start with an unstructured branch; ii) the threads are divergent; iii) ends with the immediate post-

dominator of the unstructured branch. The instructions satisfying above three requirements can be

optimized by re-converging at the earlier point.

To find these instructions, we first determined the basic blocks (CFG nodes) between an unstruc-
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tured branch and its immediate post-dominator by using our static transformation. These basic blocks

might be dynamically expanded at runtime (like B3, B4, and B5 in Figure 14). Then, we used the

emulator to count the number of times these basic blocks will run in a divergent warp. For example,

in Figure 14, B3 and B4 each runs twice in the divergent warpwarp and B5 runs four times. As-

suming each basic block has 1 instruction for the simplicity of counting instruction number, we can

say at most 8 instructions may miss the early re-convergence (actual number of dynamic expanded

instructions is 5, executed in time slots 7–11). Although this method overestimates the performance

degradation, the overestimated part is limited to the initial execution of these instructions. Takeing

Figure 14 as an example, the overestimated part is time slots 4–6 during which B3, B4 and B5 are

executed for the first time.

Table 3 shows the upper limit of dynamic code expansion for benchmarks using Forward Copy.

Some benchmarks are not included due to the issues of the emulator because the emulator cannot

correctly execute them yet. The results vary greatly. Four simple benchmarks of CUDA SDK have

very low value because the unstructured part is executed infrequently or warps do not diverge when

executing them. However, other benchmarks, such as Renderer and mcx, have a significant value

meaning the application repeatedly executes these unstructured control flows. In this case, not having

earlier re-convergence will impact the performance significantly. It is also interesting to notice that

benchmark tpacf has low static code expansion but high dynamic code expansion, which means the

unstructured part is executed very frequently.

4.2.2 Performance Evaluation of the Transformation

In this experiment, we compare the performance of benchmarks listed in Table 3 before and after the

nonstructural to structural transformation to explore its impact. In Figure 15, IPDOM uses IPDOM to

re-converge those unstructured benchmarks, STRUCT first applies the proposed transformation and

then use IPDOM to re-converge. The performance result shows that STRUCT is slightly worse than

IPDOM due to the execution of static code expansion. The benchmarks such as mergeSort have no

noticeable difference between two methods since they do not spent much time in unstructured code
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as shown in Table 3 and do not need to apply lots of transformations. IPDOM works over 1% better

than STRUCT for the benchmarks such as Renderer since they stayed in the unstructured part longer

than the other benchmarks.

4.3 Case Study

In this experiment, we modified the Ocelot emulator and rewrote the mummergpu benchmark to

force it to re-converge as early as possible. The benchmark rewriting includes adjusting the PTX

code layout, so that re-convergence points appear at the earliest point and let the emulator to check the

potential re-convergence point. We measured the dynamic instruction count (instructions dynamically

executed by all threads) of two mechanisms: re-converging at immediate post-dominator and re-converging

at the earliest point. The result shows that re-converging at earliest point can reduce 14.2% (from

53616778 to 46008916) dynamic instructions, which further demonstrates that it is a promising

research area.

5 Related Work

SIMD architectures have been designed with basic support for control flow since their large-scale

deployment in the 1960s. Since that time, new designs have been incrementally augmented with

compiler-assisted hardware support for non-nested and eventually all structured control flow and

eventually all hammock graphs (Zhang and H. D’Hollander 2004, ). These designs have culminated

in support for all forms of unstructured control flow without any static code expansion since they

allow arbitrary branches instead of being restricted to the nested structured control flow. However,

to the best of our knowledge, all schemes employed in existing designs experience dynamic code

expansion when executing unstructured control flow. A recently proposed technique, dynamic warp

formation, introduced by Fung et al (Fung et al. 2007) potentially addresses this problem. However,

it requires fully-associative comparisons across at least all warps on a multi-processor that cannot be

feasibly implemented in modern power-limited designs.

ILLIAC IV (Bouknight et al. 1972), which is in general considered to be the first large-scale
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SIMD supercomputer, was designed around the concept of a control processor that maintained a

series of predicate bits, one for each SIMD lane. Its instruction set could be used to set the predicate

bits to implement simple common structured control flows such as if-then-else blocks and loops.

The primary limitation of a single predicate register is its inability to handle programs with nested

control flow. In 1982 the CHAP (Levinthal and Porter 1984) graphics processor introduced the con-

cept of a stack of predicate registers to address this problem. CHAP includes explicit instructions

for if, else, endif, do, while statements in the high level language. This is currently the most popular

method of supporting control flow on SIMD processors and is also used by the AMD Evergreen and

Intel GEN5 graphics processors.

To support unstructured control flow, a technique referred to as immediate post-dominator re-

convergence was developed, which extends the concept of a predicate stack to support programs with

arbitrary control flow (Fung et al. 2007). This is done by finding the immediate post-dominator for

all potentially divergent branches and inserting an explicit re-converge instruction. During execution,

predicate registers are pushed onto the stack on divergent branches and popped when re-convergence

points are hit. In order to resume execution after all paths have reached the post-dominator, the

program counter of the warp executing the branch is adjusted to the instruction immediately after the

re-converge point.

All of the previous techniques have been implemented in commercial SIMD processors. Dynamic

warp formation is a technique originally described by Fung et al. (2007) that increases the efficiency

of immediate post-dominator re-convergence by migrating threads between warps if they are execut-

ing the same instruction. However, the power and hardware complexity to support detecting this

and dynamically creating a new warp from a pool of threads at the same PC, which requires fully

associative PC comparisons across active warps every cycle and register file changes may outweigh

the performance advantages. This scheme takes advantage of the fact that most programs executed by

GPUs are SPMD programs where all threads in all warps begin from the same program entry point.

This makes it likely that threads from different warps will be at the same PC in the program at the

same time. Fung suggests adding hardware support for detecting this case and dynamically creating
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a new warp from a pool of threads at the same PC. In cases with where warps have many disabled

threads, this can lead to significant performance improvements. However, the power and complexity

of the hardware support required to perform fully associative comparisons across active warp PCs ev-

ery cycle coupled with changes to the register file structure may potentially outweigh the performance

advantages. Like post-dominator re-convergence, this scheme supports all program control flow. In

the newly extension of the dynamic warp formation, Fung et al. proposes the concept of Likely-

Convergence Points (Fung and Aamodt 2011), which is basically the probable earlier re-convergence

points, without giving a practical approach to find these points. They found speedup when iterating

Likely-Convergence Points with IPDOM and their dynamic warp formation framework.

Very recently, Diamos et al. (2011) first time systematically address the problem of unstructured

control flow in SIMD processors by replacing IPDOM with a technique called thread frontier, which

includes a static algorithm to find earlier re-convergence points and a hardware framework to let the

program re-converge at these points. To get its best performance which is 1.5%-633% speedup over

IPDOM, their method relies on a specific scheduling order which may not be possible to get statically

and custom hardware support. Their findings prove the argument of this work that this is an area

worth more attention and research investment.

As to the area of GPU application characterization, Kerr et al. (2009) and Goswami et al. (2010)

respectively characterized a large number of GPU benchmarks by using a wide range of metrics

covering control flow, data flow, parallelism, and memory behaviors. Goswami also researched the

similarities between different benchmarks. Their studies are valuable for future GPU compilation and

microarchitecture design. Instead, our work focuses Our work differs from theirs in that we target

on the execution of unstructured control flow in GPUs and provides insight, characterizations, and

suggestions for future GPU designs.

6 Conclusions

This work addresses the problem of running arbitrary programs on any GPU device. The current

state of practice is not satisfactory since the support of unstructured control flow is very poor. Some
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GPU devices do not support unstructured control flow at all, while others do not support it efficiently

because they will miss the earliest re-converge point. We propose an IR level control flow transfor-

mation that can turn an unstructured control flow into a structured one. This transformation is used

to characterize the existence of unstructured control flow in a large number of benchmarks. The re-

sult verifies the importance of the problem. Further, the transformation is also useful in a dynamic

compiler used in heterogeneous systems.

In the future, we will focus on automatically finding earliest re-convergence points in an unstruc-

tured control flow graph by using different compiler and hardware techniques to improve execution

efficiency of arbitrary programs on GPUs. Moreover, we are also considering a structured to unstruc-

tured transformation. The motivation of this reverse transformation is that if we have the technique

to re-converge at the earliest point, the performance of an unstructured CFG is better than its func-

tionally equivalent structured CFG (see Section 2.3). The process is simple: whichit continuously

finds identical subgraphs and then merge them. For example, if reverse transforming Figure ??(a),

the first step is to find and merge identical B5 nodes (Figure ??(b)) and the second step is to find and

merge identical subgraph {B3, B4, B5} (Figure ??(c)). The difficulty here is searching identical CFG

subgraphs which needs to compare the register name and pointer value of all the instruction operands.
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Suite Number of Benchmarks Number of Transformed
Benchmarks with Unstructured Control Flow

CUDA SDK 56 4
Parboil 12 3
Rodinia 20 9
Optix 25 11

Total 113 27

Table 1: Existence of unstructured control flows in different GPU benchmark suites
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Benchmark Branch Cut Forward Backward Old Code New Code Static Code Transformation
Instruction Copy Copy Size Size Expansion (%) Overhead (ms)

CUDA SDK

mergeSort 160 0 4 0 1914 1946 1.67 0.085

particles 32 0 1 0 772 790 2.33 0.067

Mandelbrot 340 6 6 0 3470 4072 17.35 3.000

eigenValues 431 0 2 0 4459 4519 1.35 0.113

PARBOIL

bfs 65 1 0 0 684 689 0.73 0.036

mri-fhd 163 1 0 0 1979 1984 0.25 0.193

tpacf 37 0 1 0 476 499 4.83 0.042

RODINIA

heartwall 144 0 2 0 1683 1701 1.07 0.072

hotspot 19 1 0 0 237 242 2.11 0.038

particlefilter naive 29 3 5 0 155 203 30.97 0.115

particlfilter float 132 2 4 0 1524 1566 2.76 0.108

mummergpu 92 2 26 0 1112 2117 90.38 1.056

srad v1 34 0 1 0 572 595 4.02 0.031

Myocyte 4452 2 55 0 54993 62800 14.20 7.677

Cell 74 1 0 0 507 512 0.99 0.076

PathFinder 9 1 0 0 136 141 3.68 0.024

OPTIX

glass 157 0 7 0 4385 4892 11.56 0.412

julia 1634 14 22 0 14097 18191 29.04 4.509

mcmc sampler 101 0 3 0 4225 4702 11.29 0.319

whirligig 143 0 8 0 4533 5303 16.99 5.663

whitted 173 0 6 0 5389 5841 8.39 0.334

zoneplate 297 0 3 0 3397 3400 0.09 0.073

collision 101 0 4 0 2585 2595 0.39 0.034

progressivePhotonMap 127 0 4 0 3905 3960 1.41 0.077

path trace 29 1 0 0 1870 1875 0.27 0.028

heightfield 46 1 0 0 1761 1771 0.57 0.097

swimmingShark 51 1 0 0 1990 2000 0.50 0.067

mcrad 415 11 10 0 4552 5238 15.07 1.491

Renderer 7148 943 179 0 70176 111540 58.94 105.160

mcx 178 0 9 0 2957 5527 86.91 2.489

Table 2: Unstructured to structured transformation statistics
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Benchmark Dynamic Code Expansion Original Dynamic Instruction Dynamic Code Expansion
Area (number of instructions) Count Area (%)

Mandelbrot 86690 40756133 0.21%
mergeSort 0 192036155 0.00%
particles 8 277126005 0.00%
eigenValues 7100 628718500 0.00%
heartwall 749028 121606107 0.61%
mummergpu 11947451 53616778 22.28%
tpacf 2082509458 11724288389 17.76%
Myocyte 205924 7893897 2.61%
Renderer 462485018 279729298 84.21%
mcx 13928549604 20820693588 66.90%

Table 3: Upper limit of dynamic code expansion
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Entry

Exit

Entry/Exit
Entry

Exit

if-then-else for-loop/while-loop do-while-loop

Figure 1: Examples of structured control flow: (a) if-then-else, (b) for-loop/while-
loop, and (c) do-while-loop
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Entry

Exit

Entry/Exit Entry/Exit

Entry

Exit

(a) (b) (c) (d)

Figure 2: Examples of unstructured control flow: (a) if-then-else with extra outgo-
ing edge, (b) if-then-else with extra incoming edge, (c) loop with extra outgoing
edge, (d) loop with extra incoming edge
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Entry

B1
bra cond1()

B3
bra cond3()

B2
bra cond2()

B4
bra cond4()

B5
……

Exit

(b)

E2

E1

if (cond1() || cond2()

&& (cond3() || cond4()))

{

…
}

(a)

Entry

B1
bra cond1()

B3
bra cond3()

B2
bra cond2()

B4
bra cond4()B5

……

Exit

B5'
……

B3'
bra cond3()

B4'
bra cond4()B5''

……

B5'''
……

(c)

Figure 3: Example showing a compound condition that creates
unstructured control flow: (a) code segment, and (b) CFG having
unstructured control flow generated by short-circuit optimization,
and (c) CFG used in AMD GPUs
.
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if(…)

loop1

loop2

inline void foo() {

loop2:

    for(…){

        if(…)    return;

        …
    }

}

int main() {

loop1:

    for(…){

        foo();

        …
    }

}

(a) (b)

return

E1

Figure 4: Example showing function inlining that creates unstruc-
tured control flow: (a) code segment and (b) CFG having unstruc-
tured control flow
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Kernel

Grid of Cooperative Thread 

Arrays (CTA)

-Coarse-grain parallelism

barrier

divergent 

control flow

barrier

Cooperative Thread Arrays (CTA)

-Fine-grain parallelism

Thread Warp 1 Warp N……

fall-through part

branch target part

reconvergence

Figure 5: Execution Model of NVIDIA CUDA PTX
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if (i < N)

{

C[i] = A[i] + B[i]

}

ige r6, r4, r5

if_logicalz r6

uav_raw_load_id(0) r11, r10

uav_raw_load_id(0) r14, r13

iadd r17, r16, r8

uav_raw_store_id(0) r17, 

r15

endif

(a) (b)

Figure 6: Example of AMD IL (a) C code, and (b) corresponding
AMD IL
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Entry

B1
bra cond1()

B3
bra cond3()

B2
bra cond2()

B4
bra cond4()

B5
……

Exit

(a)

Entry Entry Entry Entry Entry Entry Entry

B1 B1 B1 B1 B1 B1 B1

B2 B2 B2 B2

B3 B3 B3

B4 B4

B5

B5

B3 B3 B3

B4 B4

B5

B5

Exit Exit Exit Exit Exit Exit Exit

Entry Entry Entry Entry Entry Entry Entry

B1 B1 B1 B1 B1 B1 B1

B2 B2 B2 B2

B3 B3 B3

B4 B4

B5

B5

B3 B3 B3

B4 B4

B5

B5Exit

Exit

Exit

Exit

Exit

Exit

Exit

T0 T1 T2 T3 T4 T5 T6 T0 T1 T2 T3 T4 T5 T6
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Entry Entry Entry Entry Entry Entry Entry

B1 B1 B1 B1 B1 B1 B1

B2 B2 B2 B2

B3 B3 B3
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B5 B5

B3 B3 B3

B4 B4

B5 B5

Exit Exit Exit Exit Exit Exit Exit

T0 T1 T2 T3 T4 T5 T6

1
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7

(b) (c) (d)

Figure 7: Example of mapping unstructured control flow into a SIMD unit: (a) unstructured CFG, (b) execution
path, (c) re-converge at immediate post-dominator, and (d) re-converge at the earliest point
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B1

B3

B2

B4

B5

(a)

B6

B7

B8

E1

E2

B1

B3

B2

B4

B5

B6

B7

B8

E1

E2

flag1=flag2=exit=false

flag1=exit=true flag2=exit =true

exit=true

(b) (c)

B1

B3

B2

B4

B5

B6

B7

B8

flag1=flag2=exit=false

flag1=exit=true flag2=exit=true

exit=true

exit

flag1

flag2

false

true

true

Figure 8: Example of a Cut transformation: (a) unstructured CFG (b) three flags are used to denote the loop exit
location (flag1: exit from B3 or not; flag2: exit from B4 or not; exit: loop terminates or not) (c) combine all exit
edges to a single exit node; (d) and use three conditional checks to find the correct code to execute after the loop
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B1

B3

B2

B4

B5

(a)

B6

E1

B1

B3

B2

B4

B5
B6

E1
B3'

B4'

B5'

(b)

B1

B3

B2

B4

B5
B6

B3'

B4'

B5'

(c)

Figure 9: Example of a Backward Copy transformation: (a) unstructured CFG; (b) use loop peeling to unravel the
first iteration; (c) point all incoming edges to the peeled part
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Entry

B1
bra cond1()

B3
bra cond3()

B2
bra cond2()

E1

B4
bra cond4()

B5
……

Exit

E2

Entry

B1
bra cond1()

B3
bra cond3()

B2
bra cond2()

E1

B4
bra cond4()B5

……

Exit

B5'
……

Entry

B1
bra cond1()

B3
bra cond3()

B2
bra cond2()

B4
bra cond4()B5

……

Exit

B5'
……

B3'
bra cond3()

B4'
bra cond4()B5''

……

B5'''
……

(a) (b) (c)

Figure 10: Example of a Forward Copy transformation: (a) unstructured CFG; (b) CFG after duplicating B5; (c)
structured CFG
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Entry Entry Entry Entry Entry Entry Entry

B1 B1 B1 B1 B1 B1 B1

B2 B2 B2 B2

B3 B3 B3

B4 B4
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Entry

B1
bra cond1()

B3
bra cond3()

B2
bra cond2()

B4
bra cond4()B5

……

Exit

B5'
……

B3'
bra cond3()

B4'
bra cond4()B5''

……

B5'''
……

(b) (c)

Entry

B1
bra cond1()

B3
bra cond3()

B2
bra cond2()

B4
bra cond4()

B5
……

Exit

(a)

Figure 11: Relationship between Forward Copy and Re-convergence at the immediate post-dominator: (a) unstruc-
tured CFG; (b) result of Forward Copy / depth first spanning tree; (c) re-convergence at the immediate post-dominator
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Figure 12: A Complete example of unstructured to structured transformation (a) original CFG; (b) build the control
tree; (c) collapses the structured node and update the control tree; (d) Forward Copy transformation; (e) update the
control tree; (f) final result
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formation (normalized to IPDOM)

44


